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Abstract The products of two and three bipolar harmonics Y�1�2
L M (r31, r32) are repre-

sented as the finite sums of powers of the three relative coordinates r32, r31 and r21.
The complete (angular + radial) integrals of the products of the two and three bipolar
harmonics in the basis of exponential radial functions are expressed as finite sums of
the auxiliary three-particle integrals�n,k,l(α, β, γ ). The formulas derived in this study
can be used to accelerate highly accurate computations of rotationally excited (bound)
states in arbitrary three-body systems. In particular, we have constructed compact
(400-term) variational wave functions for the triplet and singlet 2P(L = 1)-states in
light two-electron atoms and ions. Highly accurate calculations (20–21 stable decimal
digits in the total energy) of the triplet and singlet 2P(L = 1)-states in the two-electron
Li+, Be2+, B3+ and C4+ ions are performed for the first time.

Keywords Few-body · Bipolar · Angular · Radial

The bipolar harmonics Y�1�2
L M (r31, r32) [1] are extensively used in various methods

developed for highly accurate solutions of different three-body problems arising in
atomic, molecular and nuclear physics. The functions, Eq. (2), are often used to rep-
resent the ‘angular dependence’ of two-electron wave functions. The effectiveness
of bipolar harmonics as ‘angular’ functions follows from their explicit form which
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reflects a number of transparent physical ideas. There are a number of successful gen-
eralizations of bipolar harmonics to four- and five-body systems, where the three- and
four-polar harmonics arise. In this study, however, we restrict our analysis to three-
body systems only. In general, the three-body bipolar harmonics are written in the
form

Y�1�2
L M (x, y) = x�1

31 y�2
32

∑

m1m2

C L M
�1m1�2m2

Y�1m1(nx )Y�2m2(ny) (1)

where C L M
�1m1�2m2

are the Clebsh-Gordan coefficients, while x and y are two fundamen-
tal vectors specifying the relative positions of the three particles. The vectors nx = x

x
and ny = y

y are the unit-norm vectors used as arguments in the spherical harmonics.
Let us designate three particles in our three-particle system by the numbers 1, 2 and 3.
The ‘natural’ choice of the two fundamental vectors x and y in Eq. (1) for an arbitrary
three-body system is x = r3 − r1 = r31 and y = r3 − r2 = r32. In this case each
bipolar harmonic, Eq. (1), takes the form Y�1�2

L M (r31, r32) and contains the vectors r31
and r32. Here and everywhere below in this study we assume that these two vectors
are truly independent, i.e. r31 �= λr32, where λ is a numerical constant. Finally, the
explicit form of the bipolar harmonics takes the form

Y�1�2
L M (r31, r32) = r�1

31r�2
32

∑

m1m2

C L M
�1m1�2m2

Y�1m1(n31)Y�2m2(n32)

= r�1
31r�2

32Y�1�2
L M (n31,n32) (2)

Variational wave functions which include bipolar harmonics are used to approxi-
mate the actual wave functions of bound states with non-zero angular momentum L . In
many papers the bipolar harmonics are called and considered as the ‘angular parts’ of
basis functions. It is assumed that the additional ‘radial’ part of the total wave function
depends upon the three radial coordinates r32, r31 and r21 only, i.e., it does not contain
any of the angular variables. It is clear that the bipolar harmonics with the same L and
M values (or indexes) form the (2L + 1)-dimensional representation of the rotation
group SO(3). The explicit form of the matrices which describe transformations of the
bipolar harmonics during rotations can be found with the use of Eq. (2) and formu-
las from [2] and [3]. It can be shown that each matrix element is the product of two
Clebsh–Gordan coefficients and two Wigner’s D-functions. The explicit expression
for these matrix elements can be reduced to another ‘short’ form, but below we will
not need these formulas.

In this communication we develop the new method to operate with the bipolar
harmonics. Our main interest below is related to the products of the two and three
bipolar harmonics and angular integrals of such products. First, note that bipolar
harmonics with the same L M indexes form the closed algebra, i.e. the product of two
bipolar harmonics Y�1�2

La Ma
(r31, r32) and Y�3�4

Lb Mb
(r31, r32) is always represented as the

finite sum of bipolar harmonics with the different values of Lc and Mc. This can be
written in the following form
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Y�1�2
La Ma

(r31, r32)Y�3�4
Lb Mb

(r31, r32)

=
∑

�a�b

fL M (�1, �2, �3, �4, �5, �6; La,Ma, Lb,Mb, Lc,Mc)Y�5�6
Lc Mc

(r31, r32) (3)

where fL M (�1, �2, �3, �4; �a, �b) are the numerical coefficients which can be deter-
mined, e.g., by mulitplying the both sides of Eq. (3) by the different bipolar harmonics
and performing integration of the both parts of arising equation over all angular vari-
ables.

Let us briefly discuss the integration over the angular variables in an arbitrary
non-relativistic system of three particles. In general, to describe the non-relativistic
quantum system of spinless particles one needs 9 (3 × 3) dynamical variables. Three
of these nine variables describe the translations of the solid triangle of particles. The
internal state of three-body system does not change during such translations. In actual
cases these three (Galilean) translations can be separated by using an appropriate
choice of internal coordinates. Formally, we can assume that after such a separation of
translations one of the three particles, e.g. the third particle, will always be at rest. The
remaining six coordinates are separated into two groups: (a) three coordinates which
are rotationally invariant, i.e. they do not change during any rotation of the whole
three-body systems, and (b) three coordinates which describe rotations of the whole
three-body system. The scalar coordinates which do not change during any rotation
and/or translation of the three-body system can be chosen as the three interparticle
distances r32, r31, r21.

The choice of the three truly independent ‘rotational’ coordinates in the three-body
system is slightly more complicated, since such coordinates must be related with the
angular coordinates of the two vectors r31 and r32. Let θ1, φ1 and θ2, φ2 be the spherical
coordinates of these two vectors. In these coordinates for an elementary volume dV
we can write

dV = r2
31dr31sinθ31dθ31dφ31r2

32dr32sinθ32dθ32dφ32 (4)

These six coordinates (r31, θ31, φ31, r32, θ32, φ32) can be used to describe an arbitrary
three-body system. However, as it was shown by Hylleraas in [4] it is better to choose
three-body coordinates in a different way. In [4] three radial variables were chosen
as scalar interparticle distances (or interparticle coordinates) ri j =| ri − r j |= r ji ,
where (i j) = (32), (31), (21). On the other hand, it is clear that three angular variables
can be chosen as the three Euler’s angles φ31, θ31, φ32. In reality, one finds a number
of advantages in calculations, if such a ‘natural’ choice of angular variables is used.
In particular, in all earlier papers (see, e.g., [5–8] and references therein) three radial
r32, r31, r21 and three angular variables φ31, θ31, φ32 were chosen as described here.
In these variables an elementary volume dV takes the form

dV = r32r31r21dr32dr31dr21sinθ31dθ31dφ32dφ31 (5)

This part of our study can be concluded with the two following comments. First, the
three radial r32, r31, r21 and three angular variables φ31, θ31, φ32 are semi-separated
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from each other. This means that the angular integral of any function of these six
variables integrated over three angular variables (or over Euler’s angles) is a function
of the three radial variables only. Furthermore, in many actual cases these functions of
radial variables are written in a relatively simple, finite-term form. Second, the three
radial variables r32, r31, r21 are not independent of each other, since e.g., r21 ≤ r32+r31
and r31 ≥ | r32 − r21 |. Such constraints substantially complicate analytical and
numerical calculations of three-body integrals. Therefore, in actual cases it is better
to use three truly independent perimetric coordinates u1, u2, u3 [9], which are related
with the relative coordinates by the following linear transformation

u1 = 1

2
(r31 + r21 − r21) , u2 = 1

2
(r32 + r21 − r31) , u3 = 1

2
(r32 + r31 − r21)

The inverse relation takes the form

r32 = u2 + u3 , r31 = u1 + u3 , r32 = u1 + u2

The Jacobian of the (r32, r31, r21) → (u1, u2, u3) transformation equals 2. The three
perimetric coordinates u1, u2, u3 are independent of each other and each of them varies
between 0 and +∞.

The formula for the angular integral of the product of the two bipolar harmonics
can be written in the form

∮
d
Y�1�2

L M (r31, r32)Y�3�4
L M (r31, r32) = F L

�1�2;�3�4
(r32, r31, r21) (6)

The explicit form of the radial F L
�1�2;�3�4

function can be found with the use of Eq. (2)
[5,7]. The result is

F L
�1�2;�3�4

(r32, r31, r21)

= 1

2
(−1)Lr�1+�3

31 r�2+�4
32

√[�1][�2][�3][�4]
∑

λ

(−1)λ[λ]
(
�1 �3 λ

0 0 0

)

×
(
�2 �4 λ

0 0 0

){
�3 �4 L
�2 �1 λ

}
Pλ(x) (7)

where [a] = 2a + 1 and the notation Pλ(x) stands for the Legendre polynomial
of the order λ, where λ is a positive integer. Also, in this formula (and in some
formulas below) we use the standard notations for the 3 j- and 6 j-symbols [10].
The sum over λ in Eq. (7) is always finite, since the product of two 3 j-symbols
is not zero only for those λ which are bounded between the following values:
max{| �1 − �3 |, | �2 − �4 |} ≤ λ ≤ min{�1 + �3, �2 + �4}. Moreover, the product of
these two 3 j-symbols equals zero unless the two sums of the corresponding momenta
(�1 + �3 + λ and �2 + �4 + λ) are even numbers.
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The variable x , in Eq. (7), is the following dimensionless ratio

x = r2
31 + r2

32 − r2
21

2r31r32
(8)

This expression can be transformed with the use of the formula (8.911) from [11] for
the Legendre polynomial Pλ(x)

Pλ(x) = 1

2λ

�∑

k=0

(−1)k(2λ− 2k)!
k!(λ− k)!(λ− 2k)! xλ−2k = 1

2λ

�∑

k=0

aλ,k xλ−2k (9)

where � =
[
λ
2

]
is the integer part of λ2 and coefficients aλ,k are

aλ,k = (−1)k(2λ− 2k)!
k!(λ− k)!(λ− 2k)!

Now, by using the formula, Eq. (8), one finds the following expression for the xλ−2k

factor from Eq. (9)

xλ−2k = r2k−λ
31 r2k−λ

32

λ−2k∑

n=0

Cn
λ−2k(r

2
32 − r2

21)
nr2λ−4k−2n

32

=
λ−2k∑

n=0

Cn
λ−2k

n∑

m=0

(−1)mCm
n rλ−2k−2n

32 r2k−λ+2n−2m
31 r2m

21 (10)

where k ≤ � (see Eq. (9)) and notation Ca
b stands for the binomial coefficients (the

number of combinations from b by a, where a and b are positive integer numbers).
The formula, Eq. (10), allows one to re-write the expression, Eq. (9) in the form

Pλ(x) = 1

2λ

�∑

k=0

aλ,k

λ−2k∑

n=0

Cn
λ−2k

n∑

m=0

(−1)mCm
n rλ−2k−2n

32 r2k−λ+2n−2m
31 r2m

21 (11)

Now, by using the formulas, Eqs. (10) and (11), we can derive the following finite-sum
expression for the exponential integral of the Legendre polynomial Pλ(x)

I�2+�4;�1+�3(α, β, γ ; Pλ)

=
∫ ∫ ∫

Pλ(x) exp(−αr32 − βr31 − γ r21)r
�2+�4+1
32 r�1+�3+1

31 r21dr32dr31dr21

= 1

2λ

�∑

k=0

aλ,k

λ−2k∑

n=0

Cn
λ−2k

×
n∑

m=0

(−1)mCm
n ��2+�4+λ−2k−2n+1,�1+�3+2k−λ+2n−2m+1,2m+1(α, β, γ ) (12)
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where �k,l,n(a, b, c) is the basic three-body integral defined in [12]. The definition of
the basic three-body integral is written in the form

�k;l;n(α, β, γ ) =
∫ ∫ ∫

rk
32rl

31rn
21 exp(−αr32 − βr31 − γ r21)dr32dr31dr21 (13)

where all indexes k, l, n are assumed to be non-negative integer numbers. The ana-
lytical formula used for numerical computations of such integrals is obtained from
Eq. (13) by performing integration in perimetric coordinates [8]

�k;l;n(α, β, γ )

= 2
k∑

k1=0

l∑

l1=0

n∑

n1=0

Ck
k1

Cl
l1 Cn

n1

(l − l1 + k1)!
(α + β)l−l1+k1+1

(k − k1 + n1)!
(α + γ )k−k1+n1+1

(n − n1 + l1)!
(β + γ )n−n1+l1+1

= 2 · k! · l! · n!
k∑

k1=0

l∑

l1=0

n∑

n1=0

Ck1
n−n1+k1

Cl1
k−k1+l1

Cn1
l−l1+n1

(α + β)l−l1+k1+1(α + γ )k−k1+n1+1(β + γ )n−n1+l1+1

(14)

where Cm
M are the binomial coefficients. The formula, Eq. (14), can also be written

in a few other equivalent forms. The function n!
Xn+1 in Eq. (14) is the An(X) function

introduced by Larson [13]. The formula, Eq. (14), was produced forthe first time by
one of the author (AMF) in the middle of 1980s (see, e.g., [8] and references therein).
The formula, Eq. (14), has been used in calculations of various three-body integrals,
e.g., integrals containing one or two Bessel functions [12].

With the use of the formulas derived above one can obtain the closed (i.e. finite
term) analytical formula for the following exponential integral

F L
�1�2;�3�4

(a, b, c)

=
∫ ∫ ∫

F L
�1�2;�3�4

(r32, r31, r21) exp(−ar32 − br31 − cr21)r32r31r21dr32dr31dr21

dr31dr21

= 1

2
(−1)L

√[�1][�2][�3][�4]
∑

λ

(−1)λ
[λ]
2λ

(
�1 �3 λ

0 0 0

) (
�2 �4 λ

0 0 0

) {
�3 �4 L
�2 �1 λ

}

×
�∑

k=0

aλ,k

λ−2k∑

n=0

Cn
λ−2k

×
n∑

m=0

(−1)mCm
n ��2+�4+λ−2k−2n+1,�1+�3+2k−λ+2n−2m+1,2m+1(a, b, c) (15)

The derivation of this formula was the main goal of our study. This formula is of great
interest for numerical calculations of matrix elements which are needed to determine
the total energies of bound states in three-body systems with L ≥ 1 and calculate
various expectation values. Recently, we have developed a number of fast numeri-
cal approaches to calculate the auxiliary three-particle integrals �n,k,l(a, b, c). This
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allows one to accelerate substantially all numerical calculations of matrix elements
(see below).

Note that the matrix elements of the potential energy are written in the form of
Eq. (14) only in those cases when all interparticle interaction potentials are the scalar
functions of interparticle distances r32, r31 and r21. Such cases include Coulomb three-
body systems and three-body systems in which the potential energy is written in the
form Va(r32) + Vb(r31) + Vc(r21). In more complex cases the interaction potential
between each pair of particles can also be a function of angular coordinates. Analytical
formulas for the matrix elements in such cases must include angular integrals of the
products of three bipolar harmonics. Such integrals are discussed below.

Now, let us present the results of numerical calculations with the use of for-
mulas derived above. These results are shown in Tables 1 and 2. In Table 1 we
demonstrate the results of numerical calculations of the I�2+�4;�1+�3(α, β, γ ; Pλ) and
F L
�1�2;�3�4

(a, b, c) integrals, Eq. (15), determined for different numerical values of
its arguments (a, b, c) and parameters (L , (�1, �2), (�3, �4)). The method of numer-
ical computations of these (exponential) integrals is based on the formula, Eq. (15).
However, for actual calculations this formula has been modified to avoid numerical
instabilities which arise during summation of large numbers of positive and negative
terms. The first formula, Eq. (12), was re-written in the form

I�2+�4;�1+�3(α, β, γ ; Pλ)

= 1

2λ

�∑

k=0

| aλ,k |
λ−2k∑

n=0

Cn
λ−2k

×
n∑

m=0

(−1)k+mCm
n ��2+�4+λ−2k−2n+1,�1+�3+2k−λ+2n−2m+1,2m+1(α, β, γ ) (16)

where � =
[
λ
2

]
, while the coefficients | aλ,k | are

| aλ,k |= (2λ− 2k)!
k!(λ− k)!(λ− 2k)!

Table 1 Numerical values of the I�2+�4;�1+�3 (a, b, c; Pλ) and F L
�1�2;�3�4

(a, b, c) integrals computed
for different values of the �1, �2, �3, �4, λ and L parameters

�1 �2 �3 �4 λ I�1�2;�3�4 (a, b, c; Pλ) L F L
�1�2;�3�4

(a, b, c)

1 0 1 0 1 0.20963264469930568E+00 1 0.13008789710134043E+00

1 1 1 1 1 0.11032101479039074E+01 2 0.72370337608449528E+00

1 1 2 0 1 0.11491009319449536E+01 2 0.69783486804905589E+00

1 2 2 1 2 0.33053241063178740E+02 3 0.83514739108659169E+01

1 2 1 2 2 0.34640478424614411E+02 3 0.69505739570548458E+01

3 0 1 2 2 0.18295480775566101E+02 3 0.14561365717576028E+02

3 0 0 3 3 0.58890134034481354E+02 3 0.29445067017240677E+02

a = 1.55, b = 1.33 and c = 1.07 in all cases

123



J Math Chem (2015) 53:1068–1079 1075

Table 2 The total energies E of the bound 1 P(L = 1)- and 3 P(L = 1)-states of some two-electron atoms
and ions (in atomic units)

E(1 P(L = 1)-state) E(3 P(L = 1)-state)

∞He −2.12384308649749 −2.13316419077725
4He −2.12354565412918 −2.13288064210349
3He −2.12344834501190 −2.13278787470796
∞Li+ −4.99335107777845 −5.02771568139695
∞Be2+ −9.11077162291325 −9.17497314304428
∞B3+ −14.4772832652859 −14.5731376921778
∞C4+ −21.0933323133828 −21.2217106964635

The total number of basis functions used to construct these short-term wave functions is 400

The sums of the positive and negative terms in Eq. (16) must be calculated separately.
At the second step we have used the following formula

F L
�1�2;�3�4

(a, b, c) = 1

2
(−1)L

√[�1][�2][�3][�4]
∑

λ

(−1)λ[λ]
(
�1 �3 λ

0 0 0

) (
�2 �4 λ

0 0 0

)

×
{
�3 �4 L
�2 �1 λ

}
· I�2+�4;�1+�3(α, β, γ ; Pλ) (17)

These two formulas are used for very fast and accurate calculations of the exponential
integrals F L

�1�2;�3�4
(a, b, c) which can be found in each matrix element of the Hamil-

tonian and overlap matrices for the bound states with L ≥ 1. By performing extensive
numerical computations we have found that the method based on the modified formu-
las, Eqs. (16, 17), is fast, numerically reliable and can be applied in computations of
different rotationally excited states, including highly excited states with L ≥ 15−20.

In Table 2 we determine the total energies of the bound P(L = 1)-states of a
number of three-body systems. These systems include the two-electron ∞He, 4He
and 3He atoms and two-electron He-like ions: Li+, Be2+, B3+ and C4+. For the
bound P(L = 1)-states we can perform highly accurate numerical calculations by
using our old approach [8] and the new method described in this study. Therefore, we
can compare the final accuracy of both methods and computational times needed to
compute the same values. The nuclear masses of the 3He and 4He nuclei are 5495.8852
and 7294.2996 me, respectively [14]. The masses of the nuclei in all two-electron ions
and the He atom are assumed to be infinite. For each of these systems we determine
the total energies E (in atomic units) of the singlet 21 P-states and triplet 23 P-states
(see Table 2). Our trial wave functions contain N = 400 exponential basis functions.
The explicit form of such wave functions is

ψ(r32, r31, r21)

= 1√
2
[1 + (−1)ε P̂12] · Y�1�2

10 (r31, r32)

N∑

i=1

Ci exp(−αi r32 − βi r31 − γi r21) (18)
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Table 3 Highly accurate total energies E of the bound 1 P(L = 1)- and 3 P(L = 1)-states of some
two-electron ions (in atomic units)

Ion N E(1 P(L = 1)-state) E(3 P(L = 1)-state)

Li+ 2,500 −4.99335107778001736235 −5.027715681397367762165

Li+ 2,700 −4.99335107778001736242 −5.027715681397367762174

Li+ 2,850 −4.99335107778001736245 −5.027715681397367762180

Be2+ 2,500 −9.110771662291644408257 −9.174973143070973000582

Be2+ 2,700 −9.110771662291644408262 −9.174973143070973000594

Be2+ 2,850 −9.110771662291644408265 −9.174973143070973000601

B3+ 2,500 −14.47728326530779928311 −14.57313769221348004811

B3+ 2,700 −14.47728326530779928988 −14.57313769221348004813

B3+ 2,850 −14.47728326530779929427 −14.57313769221348004814

C4+ 2,500 −21.09333231338840905480 −21.22171069648805107794

C4+ 2,700 −21.09333231338840905491 −21.22171069648805107766

C4+ 2,850 −21.09333231338840905510 −21.22171069648805107771

The total number of basis function is designated by N

where Ci are the linear variational coefficients, ε = 1 in the case of the triplet states
and ε = 2 (or 0) in the case of the singlet states. The operator P̂12 is the permutation
of the two identical particles (electrons 1 and 2) and N is the total number of terms in
the trial function. Analogous wave functions with N = 700 basis functions will later
be used as short-term cluster functions in our highly accurate computations of the
bound 21 P- and 23 P-states in these atomic systems. All such calculations are usually
performed with the use of our two-stage optimization strategy [15].

Preliminary results of highly accurate computations of the bound 21 P- and
23 P−states in the Li+, Be2+, B3+ and C4+ ions are shown in Table 3. In these calcu-
lations we have used the short-term cluster wave functions with N = 400 terms from
Table 2. The total number of basis functions used in our highly accurate computations
was varied between 2,500 and 2,850 exponential functions. More accurate calcula-
tions of these states are possible at this moment, but they require larger computational
resources than currently availiable to the authors. The total energies and other bound
state properties of the bound 21 P- and 23 P-states in the Li+, Be2+, B3+ and C4+ ions
have never been determined to high accuracy (these bound states play important roles
in some applications). The results from Table 3 are preliminary, but they will be used to
accelerate the following highly accurate computations of the bound P(L = 1)-states
in these ions and other three-body systems. Highly accurate results (total energies) for
the singlet and triplet P(L = 1)-states in the He atom(s) can be found in [16].

As follows from the results of our highly accurate computations of the singlet
and triplet 2P(L = 1)-states in a number of two-electron ions we obtain a level of
accuracy with the approach developed here that is very close to the accuracy of an
earlier method from [8] which was specifically oriented to calculate the bound states
in three-body systems with small angular momenta L . Computational times for both
methods are also comparable to each other. This indicates a very high efficiency of our
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current approach for bound states with small L . Plus, now we have analytical formulas
for bound three-body states with arbitrary L . Our computational interest in the bound
P(L = 1)-states is based on the following facts. First, only for the bound P(L = 1)-
states can one find results determined to very high numerical accuracy, comparable to
the accuracy known for the ground and low-lying excited S(L = 0)-states. Second,
the problem of optimization of the non-linear parameters in Eq. (18) can be solved
in a very fast and accurate way for all bound states with L = 1. Formally, for bound
P-states there is no difference in our optimization algorithms from the case of the
ground state(s) in three-body systems. For rotationally exicted states with L ≥ 2 the
process of optimization of the non-linear parameters is significantly more complicated
and takes substantial computational times. For instance, for the bound 3D-states in
the He atom our current method produces the following total energies: −2.055620
7328528(4) a.u. (singlet) and −2.055636 3094537(4) a.u. Note that such an accuracy
for these states is not very high (it is comparable to the accuracy known for these
states at the end of 1990s). To obtain better overall accuracy one needs to use a better
optimization technique for the non-linear parameters in the trial wave functions. On
the other hand, all highly accurate calculations of the bound states with L ≥ 2 can
be performed with the use of the quadruple precision only. Even in calculations of
the bound D-states with N = 3,500–4,000 (N is the total number of basis functions)
there is no need to use the extended arithmetical precision [17], since the coresponding
overlap matrixes are not ill-conditioned. On the other hand, the total energies and other
bound state properties of such states are determined (with these wave functions) to
the accuracy 14–15 decimal digits. Briefly, we can say that the new optimization and
computational strategies must be developed for the rotationally excited bound states
with L ≥ 2 to produce results which contain 20–25 stable decimal digits. Right now,
we do not have such strategies and this is the main reason why we have restricted this
study to the bound P-states only.

Note that the matrix elements of the potential energy are written in the form of
Eq. (14) only in those cases when all interparticle interaction potentials are scalar
functions of interparticle distances r32, r31 and r21. Such cases include Coulomb three-
body systems and three-body systems in which the potential energy is written in the
form Va(r32) + Vb(r31) + Vc(r21). In more complex cases the interaction potential
between each pair of particles can also be a function of angular coordinates. In the
general case, such potentials can be approximated by the sums of bipolar harmonics
with the different L and M values. Analytical formulas for the matrix elements in such
cases must include angular integrals of the products of three bipolar harmonics.

Let us discuss the formulas for the products of three bipolar harmonics Y�1�2
La Ma

(r31, r32),Y�3�4
Lb Mb

(r31, r32) and Y�5�6
Lc Mc

(r31, r32). The general formulas for such prod-
ucts can be found in [1]. It is clear that the angular integral of the product of three bipolar
harmonics must be proportional to the Clebsh–Gordan coefficient C La Ma

Lb Mb Lc Mc
, or to

the corresponding 3 jm-symbol (see below). Second, as we have mentioned above,
the (2L + 1) bipolar harmonics Y�1�2

L M (r31, r32) (with the same L , but different M)
are the basis vectors of the (2L + 1)-dimensional representation of the rotation group.
Therefore, as it follows from Schur’s lemma the angular integral of the product of two
bipolar harmonics Y�1�2

La Ma
and Y�1�2

Lb Mb
is always zero unless the values of La,Ma and
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Lb,Mb are exactly the same, i.e. La = Lb and Ma = Mb. This explains the explicit
form of the angular integral used in Eq. (6). For the product of three bipolar harmonics
the situation is different and we cannot assume a priori that even some of the indexes
are equal. In general, the angular integral of the product of three bipolar harmonics is
written in the form

∮
d
Y�1�2

La Ma
(r31, r32)Y�3�4

Lb Mb
(r31, r32)Y�5�6

Lc Mc
(r31, r32)

=
(

La Lb Lc

Ma Mb Mc

)
× GLa Lb Lc

�2,�4,�6;�1,�3,�5
(r32, r31, r21)

=
(

La Lb Lc

Ma Mb Mc

) ∑

λ

bλr
�2+�4+�6
32 r�1+�3+�3

31 Pλ(x) (19)

where the function GLa Lb Lc
�2,�4,�6;�1,�3,�5

(r32, r31, r21) depends upon three relative coor-
dinates r32, r31 and r21. The explicit formula for this function is obtained from
the last equality in Eq. (19). The coefficient bλ in Eq. (19) does not depend upon
the relative coordinates, but it is a functions of all ten values of angular momenta
λ, La, Lb, Lc, �1, �2, �3, �4, �5, �6. The formula for these coefficients takes the form

bλ = 1

8π
(−1)Lb+λ√[La][Lb][Lc][�1][�2][�3][�4][�5][�6] · [λ]

×
∑

λ1

∑

λ2

(
�1 �5 λ1
0 0 0

)(
�2 �6 λ2
0 0 0

)

×
(
λ �3 λ1
0 0 0

) (
λ �4 λ2
0 0 0

){
�3 �4 Lb

λ2 λ1 λ

} ⎧
⎨

⎩

�3 �4 La

�5 �6 Lc

λ1 λ2 Lb

⎫
⎬

⎭ . (20)

In this form Eqs. (19, 20) look very similar to Eq. (6). Numerical calculations of the bλ
coefficients with the use of Eq. (20) is straightforward. For instance, for �1 = 1, �2 =
3, �3 = 2, �4 = 2, �5 = 2, �6 = 2 and for La = 1, Lb = 2, Lc = 1 one finds from
Eq. (20) b1 = 0.15921224404155089 · 10−1, b3 = −0.67600638318413508 · 10−2

and b5 = 0.27451117819426586 · 10−2. The coefficients bλ with other values of λ
equal zero identically.

Finally, as it seen from the formulas, Eqs. (19, 20) and Eq. (11), the calculation
of the three-body integralas which contain the products of three bipolar harmonics is
reduced to the computation of some finite sums of the basic (or auxiliary) three-body
integrals �k;l;n(α, β, γ ), Eq. (14). The explicit expression for the radial integral of the
GLa Lb Lc
�2,�4,�6;�1,�3,�5

(r32, r31, r21) function is

T La Lb Lc
�2,�4,�6;�1,�3,�5

=
∫ ∫ ∫

GLa Lb Lc
�2+�4+�6;�1+�3+�5

(r32, r31, r21)r32r31r21dr32dr31dr21

=
∑

λ

bλ I�2+�4+�6;�1+�3+�5(α, β, γ ; Pλ), (21)
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where I�2+�4+�6;�1+�3+�5(α, β, γ ; Pλ) is defined by Eq. (16). This is another result
which is of great interest for highly accurate computations of many actual three-
body systems. Our test calcualtions of the T La Lb Lc

�2,�4,�6;�1,�3,�5
coefficient performed for

�1 = 1, �2 = 3, �3 = 2, �4 = 2, �5 = 2, �6 = 2, La = 1, Lb = 2, Lc = 1 lead to the
following result: T 121

3,2,2;1,2,2 = 1.9488412125971230 · 104.
We have considered the products of the two and three bipolar harmonics

Y�1�2
L M (r31, r32). It is shown that angular integrals of such products are represented

as the finite sums of powers of the three relative coordinates r32, r31 and r21 (or inter-
partilce distances). The six-dimensional (angular + radial) integrals of the products
of the two and three bipolar harmonics in the basis of exponential radial functions
are expressed as finite sums of the auxiliary three-particle integrals �n,k,l(α, β, γ ).
The formulas derived in this study can be used to accelerate highly accurate com-
putations of rotationally excited (bound) states in arbitrary three-body systems. The
methods developed in this study have been used to construct very compact (but highly
accurate!) variational wave functions of triplet and singlet 2P(L = 1)-states in light
two-electron atoms and ions. The preliminary results of our highly accurate calcula-
tions of the triplet and singlet 2P(L = 1)-states in the two-electron Li+, Be2+, B3+
and C4+ ions contain 20–21 stable decimal digits. This makes our wave functions
among the most accurate wave functions ever known for these atomic systems.
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